455 叠层器件,双倍的“快乐”(求订阅)-《我有科研辅助系统》


    第(2/3)页

    比如,之前陈婉清做有机光伏倒结构器件的时候,她用到的是三氧化钼蒸镀靶材。

    中途有一次旧的三氧化钼用完了,本来想回购原来那家,结果发现断货了,需要等两周才有货。

    当时为了实验能继续进行,她便换了另外一家,纯度都是一样的,材料检验报告也没有问题。

    但做出来的器件性能就是不行,比之前用的那种三氧化钼效率普遍低2%左右。

    后来换回了原来那种三氧化钼,器件效率才恢复正常。

    至于造成这种现象的原因,谁知道呢?

    或许是和靶材的颗粒有关,或许是和里面某种微量的杂质有关,也可能刚好买到了一瓶次品……

    这些都是有可能的,就算强行找原因,也没有太大的意义。

    忙忙碌碌,花费半个月时间,终于找到了原因,最后有什么收获吗?

    没有,只是单纯的浪费了半个月的时间罢了。

    实验室中,许秋和和莫文琳两人一边工作,一边闲聊着。

    直到韩嘉莹进入实验室,号称:“我写文章写的有些累了,过来随便看看。”

    两人这才停下了交流,各奔东西。

    莫文琳转身离开,说道:“我回去写文章啦。”

    于是,许秋换了一个聊天的对象,他一边和学妹侃大山,一边制备器件。

    旋涂氧化锌,作为第一层传输层;

    旋涂PFN-Br,作为第二层传输层;

    旋涂不同厚度的J4:PCBM:IDIC-M,作为底电池有效层;

    旋涂M-PEDOT,作为第三层传输层;

    旋涂氧化锌,作为第四层传输层;

    旋涂不同厚度的PCE10:IEICO-4F,作为顶电池有效层;

    蒸镀三氧化钼,作为第五层传输层;

    蒸镀银,作为电极。

    这是之前经过优化后得到的最佳加工工艺,许秋直接套用过来。

    毕竟现在只是将IDIC-4F更换为IDIC-M,传输层方面的加工工艺大概率不会存在很大的差异。

    一直忙活到晚上十点多,许秋终于完成了新的一批IDIC-M体系叠层器件的制备与性能测试,最高效率达到了14.67%。

    同时,模拟实验中的IDIC-M体系的初步摸索结果也出来了,最高是14.97%,还有不小的上升空间。

    而IDIC-4F体系的结果,经过这些天的多次优化,目前已经达到了15.32%,上升空间并不大。

    虽然这批IDIC-M体系的叠层器件效率,暂时没有IDIC-4F体系的高,但许秋也不是很在意。

    他本来也不指望只靠制备一次器件就实现效率突破,这次尝试,主要是为了验证自己的思路有没有问题。

    现在仅仅是初步尝试,IDIC-M的体系就已经做出了与IDIC-4F相当的器件效率,说明当前优化的思路大概率是正确的。

    也就是说,有很大的几率能把叠层器件效率上限,再往上提升一些,或许能够达到15.5%以上。

    至于能不能上16%,这就要看运气了。

    完成了现实中的初次尝试,剩下的工作,许秋主要还是打算交由模拟实验室进行大范围的摸索。

    因为相较于普通的单结器件,双终端法制备的叠层器件在优化时的工作量翻倍都不止,有系统的帮忙可以省下不少时间。

    具体来说,在单结电池中,只有唯一的有效层,只需要优化一个有效层的膜厚,摸索范围通常在80-150纳米之间。

    而且对于绝大多数的有机光伏体系,把有效层的膜厚做到100纳米左右,就算偏离了最佳膜厚,通常也能达到最佳膜厚效率的90%。

    如果不是冲刺效率的工作,可以做的不那么精细。

    而双终端法制备的叠层器件,有两个有效层,需要同步优化两个膜厚。

    两个膜厚就是双倍……不,是相乘的“快乐”。

    不仅如此,摸索的范围也更大,底电池一般要从50纳米做到300纳米,顶电池要从50纳米做到200纳米。

    以底电池膜厚50-300纳米,顶电池膜厚50-200纳米为例。

    就算是以非常低的精度,比如50纳米为间隔进行摸索,也需要做6*4=24组器件。

    这么低的精度,在冲刺高效率的时候,显然是行不通的。

    因为有时候膜厚差10纳米,效率可能就会偏差0.3%、0.5%。

    那么选择高精度,比如10纳米为间隔进行摸索,就需要做26*16=416组器件。

    现实中,要是做416种条件得累死,一个月都不一定能做出来。

    折中的选择,以20纳米为间隔的话,也需要11*9=99组器件,保守估计也得爆肝一周才能完成。

    这或许是叠层器件做的人比较少的原因,不仅加工工艺的门槛比较高,还费事。

    而把这些优化放在模拟实验系统中进行,就相对简单一些,可能两三天就能完成现实中一个月的工作量。

    但同样,对叠层器件进行性能摸索的时间消耗,也是远超之前单结器件的。

    这便是许秋之前确定了以IDIC-4F、IEICO-4F为体系做叠层器件后,一直没有轻易更换有效层材料的原因。

    毕竟每换一个体系,都需要从头摸索一遍,消耗的时间成本会非常的高,何况那个时候,主要在优化传输层的结构,如果换了新的有效层体系,参照物就变了。

    总的来说,做叠层器件的时候,需要构建一个叠层器件阵列,一边是底电池有效层的厚度,另一边是顶电池有效层的厚度。

    许秋在阅读Yang Yang课题组发表的叠层器件文章的时候,看到他们将这个阵列表现为一个二维图谱,横坐标是顶电池有效层的厚度,纵坐标是底电池有效层的厚度,中间用颜色和等效率线标注出对应坐标点的器件效率。

    此外,Yang Yang他们还绘制了一些关于叠层器件效率的理论分析图谱。

    这些图谱非常的直观,许秋决定同样将类似的方法应用在自己之后的文章当中。

    其他人已经造好了的轮子,自然没有不用的道理。

    周一,组会。

    吴菲菲带领的钙钛矿团队首先汇报。

    叠层器件的制备与优化开始正常运转,她们参照有机光伏那边的经验,对自己的工艺进行改良。

    不过,因为上周许秋器件做的比较多,其他人抢不过他,像孙沃基本上都摸不到手套箱,所以钙钛矿团队上周加起来一共就只做了一批器件。

    看到这个情况,魏兴思也在考虑要不要尽快搬迁实验室了,现在只有两个手套箱,实验资源确实有些紧张。

    不过,想了想搬迁的难度,还是决定再等等看。

    好在,钙钛矿虽然只有一批器件,但器件效率相较于之前提升的还不少,从8%达到了9.6%,算是实现了一个小突破。

    另外,基于二维钙钛矿材料的半透明器件,吴菲菲基于8%的效率,30%的可见光平均透过率的结果,开始整理文章,目标期刊JMCA。

    吴菲菲写文章的速度还是非常快的,不到一周的时间,进度便达到了五成左右。

    现在钙钛矿团队大体的分工,是孙沃带着两个本科生负责干活,吴菲菲负责写文章和指导实验,偶尔下场做一做实验。

    有点像是许秋带领的有机光伏团队。

    不过,两个团队的情况还是有很大差别的。

    一方面,吴菲菲的团队人数比较少,只有孙沃一个刚刚入学的硕士生,以及两个本科生,战斗力不足。

    许秋这边有两个博士,一个博后,三个本科生,韩嘉莹虽然是本科生,但进组时间已经超过一年,实力也不差,至少比孙沃强的多,加起来的战斗力估计是吴菲菲她们两倍都不止。

    另一方面,吴菲菲她们当下的研究进展,难以在整个钙钛矿领域,或者细分的二维钙钛矿领域中处于领跑地位,而许秋现在基本上是走在了有机光伏领域的最前方。

    这就导致吴菲菲她们做的工作基本上都是些边角料,只能看着别人吃肉,发CNS,自己勉勉强强喝口汤,文章的上限差不多也就是AM了,想发NC估计都有点困难。
    第(2/3)页